Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Prenat Diagn ; 44(1): 99-107, 2024 01.
Article in English | MEDLINE | ID: mdl-38185824

ABSTRACT

OBJECTIVE: To estimate stresses and strains in the uterine wall and fetal membranes with single/multi-port fetoscopy, simulating either a percutaneous access or via exteriorized uterus. STUDY DESIGN: Finite element models based on anatomical dimensions, material properties and boundary conditions were created to simulate stresses, strains and displacements on the uterine wall and fetal membranes during simulated fetal surgery either via exteriorized uterus or percutaneous approach, and with one or three cannulas. Clinically, we measured the anatomical layer thickness and cannula entry point displacement in patients undergoing single port percutaneous fetoscopy. RESULTS: Simulations demonstrate that single port percutaneous fetoscopy increases stress on the fetal membranes (+105%, 128 to 262 kPa) and uterine wall (+115%, 0.89 to 1.9 kPa) compared to exteriorized uterine access. Using three ports increases stress by 110% (148 to 312 kPa) on membranes and 113% (1.08 to 2.3 kPa) on uterine wall. Finite Element Method showed 0.75 cm uterine entry point displacement from the cutaneous entry, while clinical measurements demonstrated displacement of more than double (1.69 ± 0.58 cm), suggesting modeled measurements may be underestimations. CONCLUSION: The stresses and strains on the fetal membranes and uterus are double as high when entering percutaneously than via an exteriorized uterus. Based on what can be clinically measured, this may be an underestimation.


Subject(s)
Cannula , Fetoscopy , Urogenital Abnormalities , Pregnancy , Female , Humans , Fetoscopy/methods , Finite Element Analysis , Uterus/surgery
2.
Am J Obstet Gynecol MFM ; 6(3): 101278, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38232818

ABSTRACT

BACKGROUND: Fetoscopic spina bifida repair is increasingly being practiced, but limited skill acquisition poses a barrier to widespread adoption. Extensive training in relevant models, including both ex vivo and in vivo models may help. To address this, a synthetic training model that is affordable, realistic, and that allows skill analysis would be useful. OBJECTIVE: This study aimed to create a high-fidelity model for training in the essential neurosurgical steps of fetoscopic spina bifida repair using synthetic materials. In addition, we aimed to obtain a cheap and easily reproducible model. STUDY DESIGN: We developed a 3-layered, silicon-based model that resemble the anatomic layers of a typical myelomeningocele lesion. It allows for filling of the cyst with fluid and conducting a water tightness test after repair. A compliant silicon ball mimics the uterine cavity and is fixed to a solid 3-dimensional printed base. The fetal back with the lesion (single-use) is placed inside the uterine ball, which is reusable and repairable to allow for practicing port insertion and fixation multiple times. Following cannula insertion, the uterus is insufflated and a clinical fetoscopic or robotic or prototype instruments can be used. Three skilled endoscopic surgeons each did 6 simulated fetoscopic repairs using the surgical steps of an open repair. The primary outcome was surgical success, which was determined by water tightness of the repair, operation time <180 minutes and an Objective Structured Assessment of Technical Skills score of ≥18 of 25. Skill retention was measured using a competence cumulative sum analysis of a composite binary outcome of surgical success. Secondary outcomes were cost and fabrication time of the model. RESULTS: We made a model that can be used to simulate the neurosurgical steps of spina bifida repair, including anatomic details, port insertion, placode release and descent, undermining of skin and muscular layer, and endoscopic suturing. The model was made using reusable 3-dimensional printed molds and easily accessible materials. The 1-time startup cost was €211, and each single-use, simulated myelomeningocele lesion cost €9.5 in materials and 50 minutes of working time. Two skilled endoscopic surgeons performed 6 simulated, 3-port fetoscopic repairs, whereas a third used a Da Vinci surgical robot. Operation times decreased by more than 30% from the first to the last trial. Six experiments per surgeon did not show an obvious Objective Structured Assessment of Technical Skills score improvement. Competence cumulative sum analysis confirmed competency for each surgeon. CONCLUSION: This high-fidelity, low-cost spina bifida model allows simulated dissection and closure of a myelomeningocele lesion. VIDEO ABSTRACT.


Subject(s)
Meningomyelocele , Spinal Dysraphism , Pregnancy , Female , Humans , Meningomyelocele/diagnosis , Meningomyelocele/surgery , Silicon , Spinal Dysraphism/diagnosis , Spinal Dysraphism/surgery , Fetoscopy/methods , Water
SELECTION OF CITATIONS
SEARCH DETAIL
...